МЕТОД ФИЛЬТРАЦИИ ЦИФРОВЫХ МОДЕЛЕЙ РАСТИТЕЛЬНОГО ПОКРОВА НА ОСНОВЕ ЛАЗЕРНОГО СКАНИРОВАНИЯ
Аннотация
Ключевые слова
Литература
Aldred A.H., Bonnor G.M. Application of airborne lasers to forest surveys. Inf. Report PI-X-51, Petawawa National Forestry Institute,Ontario,1985, 62 p.
Nilsson M. Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment, 1996, vol. 56, no. 1, pp. 1-7.
Persson A., Holmgren J., Soderman U. Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering & Remote Sensing, 2002, vol. 68, no 9, pp. 925-932.
Lim K., Treitz P., Wulder M., St-Onge B., Flood M. LiDAR remote sensing of forest structure. Progress in Physical Geography, 2003, vol. 27, no. 1, pp. 88-106.
Maltamo M., Eerikainen K., Pitkanen J., Hyyppa J., Vehmas M. Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment, 2004,vol. 90, no. 3, pp. 319-330.
Li W., Guo Q., Jakubowski M.K., Kelly M. A New Method for Segmenting Individual Trees from the Lidar Point Cloud. Photogrammetric Engineering & Remote Sensing, 2012, vol. 78, no. 1, pp. 75-84.
Jakubowski M.K., Li W., Guo Q., Kelly M. Delineating Individual Trees from Lidar Data: A Comparison of Vector-and Raster-based Segmentation Approaches. Remote Sensing, 2013,vol. 5, no. 9, pp.4163-4186.
Ben-Arie J.R., Hay G.J., Powers R.P., Castilla G., St-Onge B. Development of a pit filling algorithm for LiDAR canopy height models. Computers & Geosciences, 2009, vol. 35, no. 9, pp. 1940-1949.
Shamsoddini A., Turner R., Trinder J.C. Improving lidar-based forest structure mapping with crown-level pit removal. Journal of Spatial Science, 2013, vol. 58, no. 1, pp. 29-51.
Zhao D., Pang Y., Li Z., Sun G. Filling invalid values in a lidar-derived canopy height model with morphological crown control. International Journal of Remote Sensing, 2013, vol. 34, no. 13, pp. 4636-4654.
Axelsson P. DEM generation from laser scanner data using adaptive TIN models.International Archives of Photogrammetry and Remote Sensing, 2000, vol. 33, part B4/1, pp. 110-117.
Zhao K., PopescuS., NelsonR. Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers.Remote Sensing of Environment, 2009, vol.113, no. 1, pp. 182-196.
Rowell E., Seielstad C., Vierling L., Queen L., Shepperd W. Using Laser Altimetry-based Segmentation to Refine Automated Tree Identification in Managed Forests of the Black Hills, South Dakota. Photogrammetric Engineering & Remote Sensing, 2006, vol. 72, no. 12, pp. 1379-1388.
Gonzalez R.C., Woods R.E.Digital Image Processing, 2nd edition.Prentice Hall, 2002, 793 p.
Turner R. An airborne Lidar canopy segmentation approach for estimating above-ground biomass in coastal eucalypt forests, PhD thesis, University of New South Wales, Sydney, Australia, 2006, 354 p.
Russ J.C. The Image Processing Handbook, 6th edition. CRC Press, 2011, 885 p.
Leckie D., Gougeon F., Hill D., Quinn R., Armstrong L., Shreenan R. Combined high-density lidar and multispectral imagery for individual tree crown analysis. Can. J. Remote Sensing, 2003, vol. 29, no. 5, pp. 633-649.
Puttonen E., Litkey P., Hyyppa J. Individual Tree Species Classification by Illuminated-Shaded Area Separation. Remote Sensing, 2010, vol.2, no. 1, pp. 19-35.
Yu X., Hyyppa J., Vastaranta M., Holopainen M., Viitala R. Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, vol. 66, no. 1, pp. 28-37.
Nixon M.S., Aguado A.S. Feature Extraction & Image Processing for Computer Vision, 3rd edition. Academic Press, 2012, 609 p.
Simard M., Pinto N., Fisher J.B., Baccini A. Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research, 2011, vol. 116, no. G4, pp. 1-12.
DOI: https://doi.org/10.12731/wsd-2014-12.1-12
Ссылки
- На текущий момент ссылки отсутствуют.
(c) 2016 В мире научных открытий
ISSN 2658-6649 (print)
ISSN 2658-6657 (online)