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COOMA: AN OBJECT-ORIENTED STOCHASTIC
OPTIMIZATION ALGORITHM

Tavridovich S.A.

Stochastic optimization methods such as genetic algorithm, parti-
cle swarm optimization algorithm, and others are successfully used to
solve optimization problems. They are all based on similar ideas and
need minimal adaptation when being implemented. But several factors
complicate the application of stochastic search methods in practice:
multimodality of the objective function, optimization with constraints,
finding the best parameter configuration of the algorithm, the increas-
ing of the searching space, etc.

This paper proposes a new Cascade Object Optimization and Mod-
ification Algorithm (COOMA) which develops the best ideas of known
stochastic optimization methods and can be applied to a wide variety of
real-world problems described in the terms of object-oriented models
with practically any types of parameters, variables, and associations
between objects. The objects of different classes are organized in pools
and pools form the hierarchical structure according to the associations
between classes. The algorithm is also executed according to the pool
structure: the methods of the upper-level pools before changing their
objects call the analogous methods of all their subpools. The algorithm
Starts with initialization step and then passes through a number of it-
erations during which the objects are modified until the stop criteria
are satisfied. The objects are modified using movement, replication and
mutation operations. Two-level version of COOMA realizes a built-in
self-adaptive mechanism.

The optimization statistics for a number of test problems shows
that COOMA is able to solve multi-level problems (with objects of dif-
ferent associated classes), problems with multimodal fitness functions
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and systems of constraints. COOMA source code on Java is available
on request.

Keywords: stochastic optimization, object-oriented model; genetic
algorithm; particle swarm optimization; differential evolution; multi-
modal objective function, constraint optimization, self-adaptive para-
meters.

COOMA: OFBEKTHO-OPUEHTUPOBAHHBIN
CTOXACTUYECKHI AJITOPUTM ONITUMHU3AIIAN

Taepuoosuu C.A.

Cmoxacmuueckue memoovl ORMUMU3AYUY MAKUe KaK 2eHemuye-
CKULL ANIROPUMM, AI20PUMM POs 4acmuy u opyeue yCneuHo npumeHs-
10MCsl 0151 peuleHust ONMUMU3AYUOHHBIX 3a0ay. OHU OCHOBANBI HA CXO-
JHCUX UOeAX U MPeOVIOM MUHUMAILHOU A0AnMayuu npu NPUMeHeHUl.
Ho cywecmgyem neckonvio paxmopos, 3ampyousouux ucnoib306d-
HUe CMoXacmu4eckux mMemooo8 ONMUMU3AYUU Ha NPAKMUKe: Myilb-
MUMOOATLHOCTND YeLe6oll (DYHKYUU, HATUYUe CUCTIeMbl 02PAHUYEeH UL,
HE0OX00UMOCHb NOUCKA HAULYHUel KOHDU2ypayuy napamempos aj-
eopumma, ysenuieHue oobema npocmpancmed noucka u op.

B cmamve npeonacaemcs Hogbwlil Aneopumm KaCKAOHOU ORMUMU3a-
yuu u moouguxayuu 0ovekmos (COOMA), komopuwiii pazeusaem iyu-
wie uoeu U3BeCMHbIX CHOXACTNUYECKUX MEM0008 ONMUMUZAUUY U MO-
JHCem NPUMEHAMbCA K WUPOKOMY Kpyey 3a0ad, ONUCAHHBIX 8 MEPMUHAX
00BEKMHO-0PUEHMUPOBAHNHO20 NOOX00A C UCNONb308AHUEM NPAKMUYe-
CKU IH0OBIX MUNO08 NaApamempo8, nepemeHHbIX U Ce53ell MeHCOY 00beK-
mamu. O6vexmol pasiuiHbIX KIACCO8 NOMEWaromcs 8 nyJvl, KOMopble
Gopmupyrom uepapxuyecKyo CmpyKmypy 6 COOmeemcmesun co CmpyK-
mypoti cesazell Mencoy Kiaccamu. Aneopumm marxoice 8bINOIHAEMCs 8
COOmMEemcmauY ¢ SMotl uepapxuetl: Memoovl nyJjio8 6ePXHe20 YPOB8Hs
nepeo usmMeHeHuem c8oux 0ObeKmMos 8bi3bl8AIOM AHANOSUYHbBLE MEMO-
Obl GIOJNCEHHBIX NYN08. ANOPUMM COCIMOUM U3 Waed UHUYUATU3AYUU
u cepuu umepayuil, Ha KOMOPHLIX NPOUCXOOUM MOOUPuKayus 0Ovex-
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moe 00 mex nop, noKa He OYOym 6bINOIHEHbl KPUMEPUU OCMAHOBKIL.
O6vexmbl MOOUDUYUPYIOMCSL ¢ UCNONb308AHUEM Onepayull (UHepyu-
OHHO20) OBUIICEHUS], penauKayuy u mymayuu. /[8yxyposHesas éepcus
ANeOpUMMA peanuzyem MexaHusm agmomamuyeckoeo nodoopa napa-
MEMpo8 ONMUMU3AYULL.

Pesyromamol nposedennvix cepuil mecmos 0eMoHCMpupyom 603-
MOICHOCHIb UCNONB3068ANUSL NPEONIA2AeMo20 Alcopumma sk peulerus
MHO20YPOBHEBbIX 3a0aU (C 00bEKMAMU HECKOTLKUX 63AUMOCEAZAHHBIX
K1accos), 3a0au ¢ MyTbmMUMOOdIbHOU Yelesoll (hyHKyuell u cucmemamu
oepanuyeHutl. Aneopumm peanusoan Ha sa3vike Java, ucxoOHwlll KOO
ModHcem Oblmb IPedoCcmasien no 3anpocy.

Knroueswle cnosa: cmoxacmuyeckas onmumuzayusi;, 00beKmHo-opii-
EHMUPOBAHHBII NOOX00, 2EHEMUYECKULL AN2OPUMM, MEMOO POsL YaACTuUY,
oughghepenyuanvrasn 360m0yusL, MYTbMUMOOANLHASL Yenesast QYHKYUI,
VCII08HASL ONMUMU3AYUSL, ABIMOMAMUYECKUL NOOOOP Napamempos.

Introduction

Real-world optimization problems in such fields as economy, tech-
nology, sociology, and computer science, etc., in general, have nonlin-
ear objective functions depending on a large number of floating-point,
integer, boolean parameters and variables combined in linear and non-
linear constraints. Although many special optimization methods have
been developed for certain types of problems, it is hard to find an
universal method applicable in every case. For example, well-known
exhaustive search or gradient methods are not always efficient. Never-
theless there are different implementations of stochastic search meth-
ods such as genetic algorithm (GA) [6], particle swarm optimization
algorithm (PSO) [3], and others that can be successfully applied to a
wide variety of problems with minimal adaptation.

A GA uses mechanisms inspired by biological evolution: reproduc-
tion, mutation, recombination and selection. A PSO algorithm imitates
the collective behavior of decentralized, self-organized systems. The
methods have similar ideas: the initial population of candidate solutions
passes through a number of iterations during which the candidate solu-
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tions are changed individually (mutation in GA, the inertia and cogni-
tive terms in the velocity-update rule of PSO) and under the influence
of other solutions in the population (recombination in GA, the social
component in the velocity-update rule of PSO), the best solutions are
saved (the new population after reproduction in GA, the particle’s best
known position and the swarm’s best known position in PSO).

Proposed algorithm

A new Cascade Object Optimization and Modification Algorithm
(COOMA) is proposed in this paper. It is the universal method that can
be applied for the optimization of problems described in the terms of
object-oriented models. The basic ideas of COOMA are:

1. The solutions to a given problem and their elements are repre-
sented by the objects of different classes extending the base parent
class (Object). Each class has a number of attributes (extending Az-
tribute base parent class) which encode parameters (kept fixed during
optimization) and variables (their values are modified). The attributes
of simple types (integer, boolean, floating-point, datetime, enumerat-
ed, etc.), structured types (e. g. arrays) and object type may be used.
The attributes of object type encode associations between objects (ma-
ny-to-many and any specific combinations): the solutions and their
elements, the elements of the solutions and their elements and so on.

2. The objects of different classes are collected in pools (extending
Pool base parent class) which form the hierarchical structure accord-
ing to the associations between classes (the topmost pool (main pool)
collects the solutions and contains the pools with the elements of the
solutions, these pools in their turn contain the pools with the elements
of the elements of the solutions and so on). The pool may contain the
elements of different classes: e. g. the elements of several child classes
extended from one parent class.

3. The pools are logically divided into subsets containing feasible
and infeasible elements. The feasible elements satisfy all constraints of
the class and meet all requirements of the pool. The feasible and infeasi-
ble subsets are conducted in different ways. The infeasible elements are
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exposed to strong negative selection (the pressure of changes is heavy)
and the feasible elements undergo positive selection (the changes are
much more light). The strength of the changes may be different with-
in one subset. For example, the strength of the changes in the feasible
subset may be regulated by the value of the fitness function: the ele-
ments with better values of the fitness function may be modified with
less probability (the analog of the elite population in [12]).

4. The pools may realize different requirements: a) produce the list
of objects ordered by the value of the fitness function; b) generate the
list of the unique feasible objects (the fitness function is not important
in this case); ¢) combine a) and b). When one optimal solution has to
be found, main pool is switched to the first mode. When a list of dif-
ferent solutions with the best value of fitness function has to be found,
main pool is switched to the last (combined) mode. Subpools may
work in any mode depending on the problem requirements.

Initialize main pool

Initialize subpools

Initialize objects in pool

‘ Calculate pool's and objects’ parameters

s ~

- .
>(// If stop criteria are Yes
T~ satisfied? 7
.
.

TR

vNo

Modify main pool
Modify subpools

Modify objects in pool

‘ Calculate pool’s and objects’ parameters

Return results <«

Fig. 1. The flow chart of COOMA
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The flow chart of COOMA is shown in Fig. 1. The algorithm is
executed according to the pool structure. The initialize and modify
methods of the upper-level pool before changing their objects call the
analogous methods of all their subpools in order to get changed ob-
jects to use in object attributes. The initialize and modify methods of
the main pool and subpools have the same structure.

The initialize method of the pool after initializing its subpools sets
the initial values of all attributes of the objects in the pool with the
initial variety v €[0;1], a€A,, beB_, ceC (where C is the set of all
pools, B_is the set of the objects in the pool ¢ and A, is the set of the
attributes of the object b) and calculates pool’s and objects’ parame-
ters afterwards (see later). v, > 0 means that the attribute is initialized
with its default value (nothing is done in fact, this setting is used for
attributes-parameters) and v, > 0 means that the attribute is initialized
with random value within the limitations (maximal and minimal val-
ues, etc.) with probability v . The default value for attributes-variables
isv =1.

Modify objects in pool

- For each ) N
~~.__ objectin pool

.

Modify object

—

Move
Replicate

Mutate

bt

Calculate

>

No _|f changes -
~.__accepted? -~

Yes

Commit changes

|

Fig. 2. The flow chart of the “Modify objects in pool” block
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The modify method of the pool after modifying its subpools mod-
ifies all the objects in the pool and calculates pool’s and objects’ pa-
rameters afterwards (see later). The flow chart of the “Modify objects
in pool” block is shown in Fig. 2.

The whole idea of the object modification block in COOMA is
close to differential evolution algorithm (DE) [16]: if the changed ob-
ject is better than its previous version, the changes are accepted, oth-
erwise the previous values of attributes remain.

The modify method of the object consists of four operations: move-
ment, replication, mutation and final calculation.

The movement operation repeats the last accepted changes with
probability p.* for all objects of the pool ¢ (by default pT™*" =0.33).
The idea of the operation is close to using the inertia term in the veloc-
ity-update rule of PSO. This operation adds last committed changes to
floating-point and ordinal attributes. Other types of attributes are not
changed.

The replication operation: the object being modified b, b, eB_gets
the values of the attributes from another object b,, b,eB_ and uses
them for self changes. The probability of operation is K" - p,’, where
K — replication coefficient of the pool ¢ and p,’ — replicatlon proba-
b111ty of the object b, (by default K™ =1and prelD 0.25).

The uniform, one -point, two-point and superposition modes
of replication are available. First three modes are the same as in
crossover operation in GA (the only difference is that the result of
operation is assigned to object b, not to a new child object). Su-
perposition is closer to PSO and DE (a random coefficient ke[0;1]
is generated; the values of all corresponding floating-point and or-
dinal attributes of the objects b, and b, are combined using formu-
lax; L =1-k)-x, +k-x, , where X,, and x, are current values of
attrlbutes of obJects b, and b, x; is a new value of attribute of the
object b ; the values of all correspondlng object attributes are mixed
with probability k as the lists of objects: the objects from attribute
a, are included into new value with probability k and the objects
from attribute a, with probability 1 —k.
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The object b, is selected for replication using roulette-wheel or
tournament techniques (like in GA) from the list of objects the val-
ues of all floating-point and ordinal attributes of which satisfy the
constraint X, €[x, —s";x, +87] " =1 K -k -k, where
L - the range of values of attrrbute a,, Ki" — rephcatron scone coef-
ficient of the pool ¢, k. — replication scope coefficient of the object
b, and krs“ rephcatron scope coefficient of the attribute a, (by de-
fault K“c =1k, =land k’“ 0.1); for object attributes the Varlety of
objects in lists i is compared with K - k* - krsc value (the number of
objects with the same genotypes divided by fotal number of objects in
lists should be less than this value).

The mutation operation is similar to mutation in GA. It changes the
values of attributes with probability K™ - k™ - pI™, where K™ — mu-
tation coefficient of the pool ¢, k;™ — mutation coefficient of the object
b, beB, and p;" — mutation probability of the attribute a, acA, (by

mu t 1 .
default K™ =1, k™ =1and p™ =——, where | A, |is a number of
attributes of the object b). A,

The values of floating-point and ordinal attributes are changed using

mu

uniform distribution within the mutation scope [x, —s™;x_ +s™],
s™ =1, K™ k™ -k, where r, — the range of values of ‘attribute
a, K™ — mutation scope coefficient of the pool c, k;* — mutation
scope coefficient of the object b and k™ — mutation scope coefficient
of the attribute a, (by default K™ =1, k;™ =1 and k™* =0.1); the
object attributes’ lists are changed within the variety regulated with
K™ kg™ -k value (the number of changes in the list divided by
total number of objects in the list should be less than this value).

The calculate method of the object b computes its fitness function’s
value F(b), penalty function’s value P(b)>0 and genotype (the string
describing unique attributes’ values). The penalty function’s value is
calculated using approach described in [1, Section IV].

The changes of the object are accepted when: a) current penalty
function’s value is positive (the object is infeasible) and the new pen-
alty function’s value is less than its current value; b) the object is feasi-
ble and the new fitness function’s value is better than its current value;
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c) the object has unique value of the new genotype (only for the pools
with the unique objects’ requirement).

The “Calculate pool’s and objects’ parameters” block in Fig. 1 com-
putes minimal and maximal values of fitness and penalty functions of
objects in the pool and calculates new values of objects’ parameters
po ke k" and k™ (see above). All objects in the pool are divided into
three subsets: a) duplicates (objects with non-unique genotypes) (only
for the pools with the unique objects’ requirement); b) feasible objects
(with zero penalty function’s value and unique if required); c) infeasible
objects (with positive penalty function’s value and unique if required).
Each subset is treated individually. All duplicates get the same values of
parameters defined by pool settings pP“?, k(@) k™ @) and ke
(by default this values are higher than for feasible and infeasible unique
objects because duplicates have to be modified to become unique). The
objects in feasible and infeasible subsets get values proportionally the
values of their fitness and penalty functions. The idea is shown in Fig.
3 (the mutation coefficients are set in range [k™""; k™ ] for feasi-
ble unique objects and in range [k™"; k™ ] for infeasible unique
ones). By default the values for infeasible objects are higher than for
feasible. Other parameters of feasible and infeasible unique objects are
set similarly in ranges [p™®""; p*" ] and [p*™"; p**" '] (replication
probabilities), [k™"; k™" Jand [k™""; k™" ] (replication scope co-
efficients), [k™""; k™ ] and [k™"; k™" ] (mutation scope coef-
ficients).

mut A mut A
kb kb
1
1
kmu'[(P') :
kmm (F) pommmmeeeee o c H -
c / ! Infeasible !
k™ E) F--- ™ Feasible | ' un'ique '
c 1 unique 1 ' objects H
1 1 I 1
1 objects 1 1 1
1 1 I 1
best worst F(b) best worst P(b)

Fig. 3. Setting mutation coefficients of feasible and infeasible unique objects
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Standard stop criteria are used: a) stopping after a number of it-
erations; b) stopping when the specified value of fitness function is
reached (can be used mostly for tests); c¢) stopping after a number of
iterations when best fitness and penalty functions’ values in the pool
don’t change; d) stopping by command of operator.

When a subpool generates the list of unique feasible objects, the
situation when the total number of possible unique feasible objects
is greater than the capacity of the subpool is very likely. In this case
the object attributes using this subpool are limited by the list of the
objects already generated and many possible objects which provide
better solutions can be missing. The bang technique is proposed: when
the changes in the upper-level pool stop for some time (the fitness and/
or penalty functions’ values don’t change for a period), the bang tech-
nique is applied to subpools — the attributes of all objects in subpools
are mutated with specified probability and scope coefficient and the
changes are committed even when the objects get worse fitness and
penalty functions’ values. A new population with some features of the
previous one is produced and after a number of iterations other possi-
ble unique objects can be generated.

Aggregate pool

VAN

Segment pool 2 Segment pool 3 Segment pool 4

Segment pool 1
(etalon)

Objects

Fig. 4. Two-level approach in COOMA

This version of COOMA is very difficult to use because there are a
lot of settings that have to be adopted for different types of problems.
And these settings may not work well during the whole optimization
process. So there is a further two-level version of COOMA which re-
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quires minimal settings because it is self-adaptive. The basic idea of
this approach is shown in Fig. 4.

All pools are divided into one aggregate pool ¢* and a number of
segment pools c® € B .. Segment pools are treated as the objects of the
aggregate pool and at the same time act as the pools with their own ob-
jects —the solutions and their elements. The fitness function of segment
pools is calculated after each N, iterations (by default N , =100) via

pt

n’c’f nj
. s p/AS f,8 p/.S |Bc? | | BC.S |
the formula: F(c)) =F"(c])+F (c)), F’(c)) = e ¥ o
n® nt max i max i
o ct 9B [B, | 984 |B|
Cs |B | B | . J J
F(c)= X —— » where n'; is the count of the accept-
n; n,
max s max 7
C?EBC,\ |B s ‘ C?EBCA |B s |
C‘J CJ

ed penalty changes of the objects in the pool ¢® during N , iterations,
| B, |is the total number of the objects in the segment pool ¢*, n'; is the
total improvement of the best penalty function’s value in the segment
pool ¢® during N , iterations, ni“s is the count of the accepted fitness
changes of the objects in the pool ¢ during N , iterations, nzs is the
total improvement of the best fitness function’s value in the pool c®
during N , iterations. If there are no infeasible objects in the segment
pool, F*(c}) is set to 1.

Initially all segment pools have the equal number of objects. After
each N , iterations the objects are redistributed among segment pools
proportionally the values of their fitness functions, but the number of
objects in the segment pool ¢® can’t be less than its minimal quota
(by defaultq , =1).

The parameters of segment pools (such as pI™, K, p™“” p
p®, ™), p®) etc.) become attributes which are modified each
N, iterations after redistributing of objects among segment pools.
The first segment pool is called etalon pool and its attributes are not
changed (it allows to preserve initial parameters).

rep(F")
¢ s
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As the optimization process may pass through a number of stages
which require different settings, the predefined strategies technique
can be realized. There are three basic predefined strategies (the num-
ber can be increased): a) standard search, b) local search and c) global
search. The default strategy is standard search. It has homogenized
parameter configuration applicable for different problems. After a
number of iterations since the best fitness and penalty functions’ val-
ues of the objects in all segment pools stopped to change the random
strategy is selected. Local search strategy helps in situations when
COOMA is close to optimal solution and more accurate search in the
possible optimum area is required (it has more precise replication and
mutation scope coefficients). Global search strategy is successful
when the local optimum is already reached and we need to explore
full search space to find better solutions (it has higher replication and
mutation scope coefficients). The new selected strategy is assigned to
etalon pool.

Results

To demonstrate the operation of COOMA, two multi-level prob-
lems were optimized using two-level version of algorithm with four
segment pools.

First is one-dimensional wood board cutting problem. Suppose we
have three types of wood boards with lengths 200, 300 and 600 cm
costing each $1, $1.25 and $1.75 respectively. The boards are to be
cut into small board parts: 36 parts with length 120 cm, 25 parts — 300
cm and 14 parts — 500 cm. The total cost of materials should be min-
imized.

In the terms of COOMA there are three subpools with cutting
methods c¢,1=1,2,3 (for each possible length of boards) and one
main pool with solutions c,. Objects representing cutting methods
b,;eB.,j=12,..,40 have three attributes-variables X, , encoding
a number of parts of type k cut from one board of type i and two attri-
butes-parameters L, =L,andP, =P - length and cost of the board
of type i. The solutlons b eB,, ,1=1,2,...,12 have three object at-
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tributes-variables s, ;,1=1,2,3 containing from 0 to 40 objects from
subpools of each type. So solution shows how many boards of each
type should be cut using different methods.

The fitness function of the objects representing cutting methods is

F(b, )=120x,  +300x, ,+500x, ,—>max, the single constraint isl
120x, | +300x, ,+500x, . <L, (when the constraint is not satisfied,

R
the penalty function’s value equals the difference between the left and
the right part of the expression, otherwise the penalty function’s value
is zero).
The fitness function of the solutions is F(b,)= Y. P, — min and

b; ;€S
constraints are ) x, ,>36, >, x, ,>25and ) x, ,>14, where
b, e, b,es, b, s,

S =8,,,US, » US, .

The minimal fitness function’s value is $59.5, the optimal solution
is shown in Table 1. The minimal fitness function value is achieved
when 34 boards with length 600 cm are cut using the combination of
4 cutting methods.

Table 1.
The optimal solution of the wood board cutting problem (one of)
Board Cost Cuts Part1, Part2, Part3, Cost per cutting
type  per board, $ 120 ecm 300 cm 500 cm method, $
Board 1, | 3 3 3 3 3
200 cm
Board 2,
300 cm 1.25 B B B - B
S - S S O 105 ...
Board 3, 175 32 ] P - 525
600 cm ' N S S S Y ©c” -~ S
14 — — 1 24.5
Total - 34 36 25 14 59.5

The average optimization statistics of 1000 runs of COOMA for
wood board cutting problem is given in Table 2. Bang technique prac-
tically shows no effect in this case.
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Table 2.
COOMA statistics for wood board cutting problem
Test Stop when Bar.lg oD Average Solution
number no change, techn{que fitness step num- not found,
steps applied ber runs
______ 1 o o802 18677 4
2 1000 . t....6014 18636 4
B S 2000 . T 9.9 32939 ¢ 6 ..
B SR 2000 . o975 33214 A
B 3000 o272 A8 L
B R 3000 o963 46075 6
A 2000 To965 70349 S
8 5000 + 59.54 6831.9 6

Second test problem is an abstract engineering prob-
lem — the machine containing components is designed. The
solutions in the main pool ¢, (pool of the machines) have one
object attribute s, ,b; €B_,i=1,2,...,12 which contains 3 ob-
jects from the subpool ¢, (components’ pool). The objects in
the subpool b, e€B,,j=1,2,..,20 have three attributes-vari-

ables X, . €[-3;3],k=1,2,3 and are optimized via formula

F(b,)=5- Z 1- cos(SXb «)]—> min. The solutlons in the main pool

are optlmlzed using formula F(b,) = )] Z X, * — min.

It is clear that the minimal value bf'the'fitness function is 0 when
all three selected components have all variables with zero values. The
average optimization statistics of 1000 runs of COOMA for machine
design problem is given in Table 3. The capacity of the subpool (20)
is less than the possible number of optimal components (125 com-
ponents with F(b,) = 0). So the bang technique helps to find optimal
solutions. Without it the average fitness function’s value doesn’t go
lower 2.618 even after 5800 iterations.

Though COOMA is not mainly intended to work with classical
mathematical functions and its major mission is to optimize multi-lev-
el object structures, to demonstrate the operation of COOMA several



40 International Journal of Advanced Studies, Vol. 7, No 2, 2017

well-known test functions were optimized: 8 functions without con-
straints and 11 functions with constraints.

Table 3.
COOMA statistics for machine design problem

Test Stop when

Bang tech- Average Average Solution not
num-  no change,

nique applied  fitness step number found, runs

ber steps
1 1000 - 2.905 1380.7 —
2 1000 _ 0.066 1 896.0 —
3 2000 = 2.927 2531.4 —
4 2000 _ 0.002 3131.2 —
5 3000 - 2.923 3667.8 —
6 3000 _+ 0.0 4229.4 -
7 5000 - 2.618 5800.0 —
8 5000 + 0.0 6229.0 —

Table 4.
COOMA results for test functions without constraints

Number Average  Average operations’ usage, %  Solution

Tes't of vari- step num- (movement : replication : mu- not found,
function .
ables ber tation) runs

‘DelJongl 50 6 830.6 191:12.62:8547 -
Rosen-

brock’s 50 1009 831.9 11.18:1.29:87.53 -
Saddle I
‘DeJong3 50 1186838 0.63:14.76:8461 -
Rastrigin 50 30002.3 9.58:4.7:85.72 .. -
Schwefel 50 778051 2193:153:7655 . -
Griewank 50 134511 772:692:8536 .1 1
Ackley 50 170553 7.65:7.56:8479 .. -
;‘ﬂaffer 2 190.6 11.53:7.56 : 80.91 -

The average optimization statistics of 100 runs of COOMA for test
functions without constraints is given in Table 4. The parameters of
optimization: 12 solutions in the main pool divided into 4 segment
pools, fitness function’s precision +0.001, apply new strategy after
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100n steps during which fitness function doesn’t change (where n is
the number of variables), stop when exact or better value of fitness
function is achieved (the search also stops and reports “Solution not
found” if after 50 changes of strategy, fitness function’s value is still
not found).

All functions were successfully optimized. The worst results (max-
imal average step number 1 009 831.9) were shown for Rosenbrock’s
saddle test.

The functions with constraints marked G1-G11 were taken from
[8, Appendix]. The average optimization statistics of 100 runs of
COOMA for test functions with constraints is given in Table 5. The
parameters of optimization: 12 solutions in the main pool divided
into 4 segment pools, fitness and penalty functions’ precision =0.001
(£0.002 for G7), equalities’ precision £0.0001, apply new strategy af-
ter 100n steps during which fitness function doesn’t change (where n
is the number of variables), stop when exact or better value of fitness
function is achieved (the search also stops and reports “Solution not
found” if after 1000 changes of strategy, fitness function’s value is still
not found).

Table 5.
COOMA results for test functions with constraints

Number  Average  Average operations’ usage, %  Solution

Tes.t of vari- step num- (movement : replication : mu- not found,
function .
ables ber tation) runs

Gl 13 106151 20.81:2.53 :76.66 —
G2 20 1250319.8 20.29:2.58 :77.14 6
G3 20 167852 18.85:0.93 : 80.22 3
G4 5 24748.6 27.4:1.25:71.35 —
G5 4 22635 29.6 :0.67 : 69.73

G6 2 80216 28.6:0.77 : 70.62 —
G7 10 1216486.5 18.88:9.33:71.79 9
G8 2 830 27.85:0.77 : 71.37 —
G9 7 866 667.7 20.82:5.0:74.18 54
G10 8 618 702.6 28.06:0.44 : 71.49 72
G11 2 1298.19 22.72:1.11:76.17 —
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The problems occurred with G7 function. COOMA was able to
find optimal solution only with fitness and penalty functions’ preci-
sion £0.002 and still the average step number (1 216 486.5) is one of
the biggest. And the maximal average step number (1 250 319.8) was
shown for G2 function.

G10 and G9 functions lead in “Solution not found” situation (72
and 54 failures respectively).

The fitness function’s value received for G5 function (average
4605.68, minimal 4220.53, maximal 5120.36) is better than reported
in [8, Appendix] (5126.4981).

To demonstrate the ability of COOMA to solve multimodal func-

tions, test function f(x)=5- Z(l cos(5-x;)), x, €[-3; 3] was opti-

mized. Function’s minimal Value is 0 and the number of optimums is
5" where n is the number of variables.

The average optimization statistics of 100 runs of COOMA for
multimodal test function with different number of variables is given
in Table 6. The parameters of optimization: main pool divided into 4
segment pools, unique objects’ requirement of the main pool is set,
fitness function’s precision +0.001, stop after 2000n steps.

Table 6.
COOMA results for multimodal test function
Number Total number Average Total A.verage opera-
. Step . found number tions’ usage, %
of vari- of solutions . . .
ount . optimums of opti- (movement : repli-
ables in main pool . X
count mums cation : mutation)
] | 2000 12 48 5 22.27:1.36:76.37
2 4000 32 181 25 20.7:1.53:77.77
3 6000 160 88.6 125 21.94:1.21:76.86
4 8000 200  169.1 625 19.77:1.68:78.55
5 10000 200 1879 3125 16.12: 1.85:82.03
10 20 000 200 192.4 9765625 14.11:2.21:83.68

Statistics shows that the maximal number of optimums from known
number is found for test cases with smaller dimensions (4.8 from 5
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for one variable’s case and 18.1 from 25 for two variables’ case). In
other cases the average number of found optimums is much more less
than known total number because (possible reasons) a) the number of
known optimums grows faster than the number of steps, b) the ability
to find solutions is limited by the total capacity of the main pool (for
tests with 4 variables and more).

Discussion

As an efficient optimization algorithm COOMA should deal with
several factors that complicate the application of stochastic search
methods in practice (the list is not complete).

The first one is the multimodality of the objective function. Classi-
cal stochastic search algorithms are likely to find one best solution and
that’s a problem because a) the “best” solution is usually only a local
optimum and the global optimum may be not found; b) in some cases
we need to find out all the solutions to satisfy the requirements first
and then select the best one among them manually according to other
criterions [4]. The problem can be partially solved with special set-
tings of the classical algorithms (such as increased level of mutations
and cross-breeding in GA) and using the new approaches [5, 9, 10].

COOMA works with multimodal objective functions realizing
mechanism which limits the area of replication and mutation opera-
tions. The replication and mutation scopes are regulated on several
levels — by replication and mutation scope coefficients of the pools,
objects and attributes. These coefficients depend on the fitness and
penalty functions’ values of the object, on the strategy (standard, local
or global search) implemented by the pool and on the initial settings
of the algorithm.

The second difficulty is constraint optimization. The goal of con-
straint optimization is to optimize the fitness function while satisfying
a group of constraints. There are different modifications of optimiza-
tion algorithms [2, 11, 13] that can deal with constraint optimization.
The basic approaches of handling constraints (on the example of ge-
netic algorithms) are described in [8].
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In COOMA for each object in pool the new fitness and penalty
functions’ values are calculated and the changes are accepted when a)
current penalty function’s value is positive (the object is infeasible)
and the new penalty function’s value is less than its current value or b)
the object is feasible and the new fitness function’s value is better than
its current value. Realizing this model COOMA at first finds the fea-
sible area and then searches for the optimal solutions within this area.

The next factor is that there is no optimal parameter configuration of
the certain algorithm for all types of problems. The situation is described
by so called “No free lunch” theorem [17]. There are three basic ap-
proaches: a) to use some homogenized parameter configuration (which
will work with some average performance for different problems); b) to
change parameter configuration manually before solving each problem;
¢) to adopt parameters of the algorithm automatically before or while
solving the problem (the idea which seems to be more perspective). The
realization of the last approach is described in [7], [15, Section 10].

COOMA implements a self-adaptive two-level approach when
each pool is divided into one aggregate pool and a number of segment
pools which are treated as the objects of the aggregate pool. This ap-
proach helps to adopt parameters of the algorithm automatically while
solving the problem.

And the last but not the least difficulty is a number of variables and
their behavior in real-world problems. When the number of variables
increases and their behavior becomes rather complex, even the very
best algorithms are not able to find the optimal solution in a reason-
able time because the searching space is too large. One of the possible
ways is to separate a single big problem into several smaller ones ac-
cording to the problem’s structure, and realize a multi-level hierarchi-
cal algorithm. This approach is realized e. g. in [14].

COOMA realizes an Object-Relational Mapping (ORM) model
supporting practically any types of parameters, variables, and associ-
ations between objects. The objects of different classes are organized
in pools and pools form the hierarchical structure according to the
associations between classes.
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Conclusion

The main advantage of the proposed algorithm (COOMA) is that
it can find optimal solutions of the problems described in the terms of
object-oriented models with practically any types of parameters, vari-
ables, and associations between objects. It can easily be implemented
in a form of computer program in which problem models can be built
using visual interface or exported from existing database and ORM
structures.

As the optimization algorithm COOMA is able to solve problems
with multimodal fitness functions and a system of constraints and has
a built-in self-adaptive settings’ mechanism.

COOMA source code on Java is available on request.
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