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COOMA: AN OBJECT-ORIENTED STOCHASTIC                     
OPTIMIZATION ALGORITHM

Tavridovich S.A.

Stochastic optimization methods such as genetic algorithm, parti-
cle swarm optimization algorithm, and others are successfully used to 
solve optimization problems. They are all based on similar ideas and 
need minimal adaptation when being implemented. But several factors 
complicate the application of stochastic search methods in practice: 
multimodality of the objective function, optimization with constraints, 
finding the best parameter configuration of the algorithm, the increas-
ing of the searching space, etc.

This paper proposes a new Cascade Object Optimization and Mod-
ification Algorithm (COOMA) which develops the best ideas of known 
stochastic optimization methods and can be applied to a wide variety of 
real-world problems described in the terms of object-oriented models 
with practically any types of parameters, variables, and associations 
between objects. The objects of different classes are organized in pools 
and pools form the hierarchical structure according to the associations 
between classes. The algorithm is also executed according to the pool 
structure: the methods of the upper-level pools before changing their 
objects call the analogous methods of all their subpools. The algorithm 
starts with initialization step and then passes through a number of it-
erations during which the objects are modified until the stop criteria 
are satisfied. The objects are modified using movement, replication and 
mutation operations. Two-level version of COOMA realizes a built-in 
self-adaptive mechanism.

The optimization statistics for a number of test problems shows 
that COOMA is able to solve multi-level problems (with objects of dif-
ferent associated classes), problems with multimodal fitness functions 
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and systems of constraints. COOMA source code on Java is available 
on request.

Keywords: stochastic optimization; object-oriented model; genetic 
algorithm; particle swarm optimization; differential evolution; multi-
modal objective function; constraint optimization; self-adaptive para
meters.

COOMA: ОБЪЕКТНО-ОРИЕНТИРОВАННЫЙ 
СТОХАСТИЧЕСКИЙ АЛГОРИТМ ОПТИМИЗАЦИИ

Тавридович С.А.

Стохастические методы оптимизации такие как генетиче-
ский алгоритм, алгоритм роя частиц и другие успешно применя-
ются для решения оптимизационных задач. Они основаны на схо-
жих идеях и требуют минимальной адаптации при применении. 
Но существует несколько факторов, затрудняющих использова-
ние стохастических методов оптимизации на практике: муль-
тимодальность целевой функции, наличие системы ограничений, 
необходимость поиска наилучшей конфигурации параметров ал-
горитма, увеличение объема пространства поиска и др.

В статье предлагается новый Алгоритм каскадной оптимиза-
ции и модификации объектов (COOMA), который развивает луч-
шие идеи известных стохастических методов оптимизации и мо-
жет применяться к широкому кругу задач, описанных в терминах 
объектно-ориентированного подхода с использованием практиче-
ски любых типов параметров, переменных и связей между объек-
тами. Объекты различных классов помещаются в пулы, которые 
формируют иерархическую структуру в соответствии со струк-
турой связей между классами. Алгоритм также выполняется в 
соответствии с этой иерархией: методы пулов верхнего уровня 
перед изменением своих объектов вызывают аналогичные мето-
ды вложенных пулов. Алгоритм состоит из шага инициализации 
и серии итераций, на которых происходит модификация объек-
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тов до тех пор, пока не будут выполнены критерии остановки. 
Объекты модифицируются с использованием операций (инерци-
онного) движения, репликации и мутации. Двухуровневая версия 
алгоритма реализует механизм автоматического подбора пара-
метров оптимизации.

Результаты проведенных серий тестов демонстрируют воз-
можность использования предлагаемого алгоритма для решения 
многоуровневых задач (с объектами нескольких взаимосвязанных 
классов), задач с мультимодальной целевой функцией и системами 
ограничений. Алгоритм реализован на языке Java, исходный код 
может быть предоставлен по запросу.

Ключевые слова: стохастическая оптимизация; объектно-ори-
ентированный подход; генетический алгоритм; метод роя частиц; 
дифференциальная эволюция; мультимодальная целевая функция; 
условная оптимизация; автоматический подбор параметров.

Introduction
Real-world optimization problems in such fields as economy, tech-

nology, sociology, and computer science, etc., in general, have nonlin-
ear objective functions depending on a large number of floating-point, 
integer, boolean parameters and variables combined in linear and non-
linear constraints. Although many special optimization methods have 
been developed for certain types of problems, it is hard to find an 
universal method applicable in every case. For example, well-known 
exhaustive search or gradient methods are not always efficient. Never-
theless there are different implementations of stochastic search meth-
ods such as genetic algorithm (GA) [6], particle swarm optimization 
algorithm (PSO) [3], and others that can be successfully applied to a 
wide variety of problems with minimal adaptation. 

A GA uses mechanisms inspired by biological evolution: reproduc-
tion, mutation, recombination and selection. A PSO algorithm imitates 
the collective behavior of decentralized, self-organized systems. The 
methods have similar ideas: the initial population of candidate solutions 
passes through a number of iterations during which the candidate solu-
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tions are changed individually (mutation in GA, the inertia and cogni-
tive terms in the velocity-update rule of PSO) and under the influence 
of other solutions in the population (recombination in GA, the social 
component in the velocity-update rule of PSO), the best solutions are 
saved (the new population after reproduction in GA, the particle’s best 
known position and the swarm’s best known position in PSO).

Proposed algorithm
A new Cascade Object Optimization and Modification Algorithm 

(COOMA) is proposed in this paper. It is the universal method that can 
be applied for the optimization of problems described in the terms of 
object-oriented models. The basic ideas of COOMA are:

1. The solutions to a given problem and their elements are repre-
sented by the objects of different classes extending the base parent 
class (Object). Each class has a number of attributes (extending At-
tribute base parent class) which encode parameters (kept fixed during 
optimization) and variables (their values are modified). The attributes 
of simple types (integer, boolean, floating-point, datetime, enumerat-
ed, etc.), structured types (e. g. arrays) and object type may be used. 
The attributes of object type encode associations between objects (ma-
ny-to-many and any specific combinations): the solutions and their 
elements, the elements of the solutions and their elements and so on.

2. The objects of different classes are collected in pools (extending 
Pool base parent class) which form the hierarchical structure accord-
ing to the associations between classes (the topmost pool (main pool) 
collects the solutions and contains the pools with the elements of the 
solutions, these pools in their turn contain the pools with the elements 
of the elements of the solutions and so on). The pool may contain the 
elements of different classes: e. g. the elements of several child classes 
extended from one parent class.

3. The pools are logically divided into subsets containing feasible 
and infeasible elements. The feasible elements satisfy all constraints of 
the class and meet all requirements of the pool. The feasible and infeasi-
ble subsets are conducted in different ways. The infeasible elements are 
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exposed to strong negative selection (the pressure of changes is heavy) 
and the feasible elements undergo positive selection (the changes are 
much more light). The strength of the changes may be different with-
in one subset. For example, the strength of the changes in the feasible 
subset may be regulated by the value of the fitness function: the ele-
ments with better values of the fitness function may be modified with 
less probability (the analog of the elite population in [12]).

4. The pools may realize different requirements: a) produce the list 
of objects ordered by the value of the fitness function; b) generate the 
list of the unique feasible objects (the fitness function is not important 
in this case); c) combine a) and b). When one optimal solution has to 
be found, main pool is switched to the first mode. When a list of dif-
ferent solutions with the best value of fitness function has to be found, 
main pool is switched to the last (combined) mode. Subpools may 
work in any mode depending on the problem requirements.

Fig. 1. The flow chart of COOMA
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The flow chart of COOMA is shown in Fig. 1. The algorithm is 
executed according to the pool structure. The initialize and modify 
methods of the upper-level pool before changing their objects call the 
analogous methods of all their subpools in order to get changed ob-
jects to use in object attributes. The initialize and modify methods of 
the main pool and subpools have the same structure.

The initialize method of the pool after initializing its subpools sets 
the initial values of all attributes of the objects in the pool with the 
initial variety va∈[0;1], a∈Ab, b∈Bc, c∈C (where C is the set of all 
pools, Bc is the set of the objects in the pool c and Ab is the set of the 
attributes of the object b) and calculates pool’s and objects’ parame-
ters afterwards (see later). va > 0 means that the attribute is initialized 
with its default value (nothing is done in fact, this setting is used for 
attributes-parameters) and va > 0 means that the attribute is initialized 
with random value within the limitations (maximal and minimal val-
ues, etc.) with probability va. The default value for attributes-variables 
is va = 1.

Fig. 2. The flow chart of the “Modify objects in pool” block
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The modify method of the pool after modifying its subpools mod-
ifies all the objects in the pool and calculates pool’s and objects’ pa-
rameters afterwards (see later). The flow chart of the “Modify objects 
in pool” block is shown in Fig. 2.

The whole idea of the object modification block in COOMA is 
close to differential evolution algorithm (DE) [16]: if the changed ob-
ject is better than its previous version, the changes are accepted, oth-
erwise the previous values of attributes remain.

The modify method of the object consists of four operations: move-
ment, replication, mutation and final calculation.

The movement operation repeats the last accepted changes with 
probability mov

cp  for all objects of the pool c (by default 33.0pmov
c = 0.33). 

The idea of the operation is close to using the inertia term in the veloc-
ity-update rule of PSO. This operation adds last committed changes to 
floating-point and ordinal attributes. Other types of attributes are not 
changed. 

The replication operation: the object being modified b1, b1∈Bc gets 
the values of the attributes from another object b2, b2∈Bc and uses 
them for self changes. The probability of operation is rep

b
rep
c 1

pK ⋅ , where 
rep
cK  – replication coefficient of the pool c and rep

b1
p  – replication proba-

bility of the object b1 (by default 1Krep
c =  and 25.0prep

b1
= 0.25). 

The uniform, one-point, two-point and superposition modes 
of replication are available. First three modes are the same as in 
crossover operation in GA (the only difference is that the result of 
operation is assigned to object b1, not to a new child object). Su-
perposition is closer to PSO and DE (a random coefficient k∈[0;1] 
is generated; the values of all corresponding floating-point and or-
dinal attributes of the objects b1 and b2 are combined using formu-
la , where 

1bax  and 
2bax  are current values of 

attributes of objects b1 and b1, 
*
a 1b

x  is a new value of attribute of the 
object b1; the values of all corresponding object attributes are mixed 
with probability k as the lists of objects: the objects from attribute 

2ba  are included into new value with probability k and the objects 
from attribute 

1ba  with probability 1 – k. 
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The object b2 is selected for replication using roulette-wheel or 
tournament techniques (like in GA) from the list of objects the val-
ues of all floating-point and ordinal attributes of which satisfy the 
constraint , , where 

1bar  – the range of values of attribute 
1ba , rsc

cK  – replication scope coef-
ficient of the pool c, rsc

b1
k  – replication scope coefficient of the object 

b1 and rsc
a 1b

k  – replication scope coefficient of the attribute 
1ba  (by de-

fault 1Krsc
c = , 1k rsc

b1
=  and 1.0k rsc

a 1b
= ); for object attributes the variety of 

objects in lists is compared with rsc
a

rsc
b

rsc
c 1b1

kkK ⋅⋅  value (the number of 
objects with the same genotypes divided by total number of objects in 
lists should be less than this value).

The mutation operation is similar to mutation in GA. It changes the 
values of attributes with probability mut

a
mut
b

mut
c pkK ⋅⋅ , where mut

cK  – mu-
tation coefficient of the pool c, mut

bk  – mutation coefficient of the object 
b, b∈Bc and mut

ap  – mutation probability of the attribute a, a∈Ab (by 

default 1K mut
c = , 1k mut

b =  and , where |A| b  is a number of 
attributes of the object b). 

The values of floating-point and ordinal attributes are changed using 
uniform distribution within the mutation scope , 

, where 
bar  – the range of values of attribute 

ab, 
msc
cK  – mutation scope coefficient of the pool c, msc

bk  – mutation 
scope coefficient of the object b and msc

ab
k  – mutation scope coefficient 

of the attribute ab (by default 1K msc
c = , 1k msc

b =  and 1.0k msc
ab

= ); the 
object attributes’ lists are changed within the variety regulated with 

msc
a

msc
b

msc
c b

kkK ⋅⋅  value (the number of changes in the list divided by 
total number of objects in the list should be less than this value).

The calculate method of the object b computes its fitness function’s 
value F(b), penalty function’s value P(b)≥0 and genotype (the string 
describing unique attributes’ values). The penalty function’s value is 
calculated using approach described in [1, Section IV].

The changes of the object are accepted when: a) current penalty 
function’s value is positive (the object is infeasible) and the new pen-
alty function’s value is less than its current value; b) the object is feasi-
ble and the new fitness function’s value is better than its current value; 
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c) the object has unique value of the new genotype (only for the pools 
with the unique objects’ requirement).

The “Calculate pool’s and objects’ parameters” block in Fig. 1 com-
putes minimal and maximal values of fitness and penalty functions of 
objects in the pool and calculates new values of objects’ parameters 

rep
bp , rsc

bk , mut
bk  and msc

bk  (see above). All objects in the pool are divided into 
three subsets: a) duplicates (objects with non-unique genotypes) (only 
for the pools with the unique objects’ requirement); b) feasible objects 
(with zero penalty function’s value and unique if required); c) infeasible 
objects (with positive penalty function’s value and unique if required). 
Each subset is treated individually. All duplicates get the same values of 
parameters defined by pool settings )dup(rep

cp , )dup(rsc
ck , )dup(mut

ck  and )dup(msc
ck  

(by default this values are higher than for feasible and infeasible unique 
objects because duplicates have to be modified to become unique). The 
objects in feasible and infeasible subsets get values proportionally the 
values of their fitness and penalty functions. The idea is shown in Fig. 
3 (the mutation coefficients are set in range ]k;k[ )F(mut

c
)F(mut

c

−+

 for feasi-
ble unique objects and in range ]k;k[ )P(mut

c
)P(mut

c

−+

 for infeasible unique 
ones). By default the values for infeasible objects are higher than for 
feasible. Other parameters of feasible and infeasible unique objects are 
set similarly in ranges ]p;p[ )F(rep

c
)F(rep

c

−+

 and ]p;p[ )P(rep
c

)P(rep
c

−+

 (replication 
probabilities), ]k;k[ )F(rsc

c
)F(rsc

c

−+

 and ]k;k[ )P(rsc
c

)P(rsc
c

−+

 (replication scope co-
efficients), ]k;k[ )F(msc

c
)F(msc

c

−+

 and ]k;k[ )P(msc
c

)P(msc
c

−+

 (mutation scope coef-
ficients).

Fig. 3. Setting mutation coefficients of feasible and infeasible unique objects
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Standard stop criteria are used: a) stopping after a number of it-
erations; b) stopping when the specified value of fitness function is 
reached (can be used mostly for tests); c) stopping after a number of 
iterations when best fitness and penalty functions’ values in the pool 
don’t change; d) stopping by command of operator.

When a subpool generates the list of unique feasible objects, the 
situation when the total number of possible unique feasible objects 
is greater than the capacity of the subpool is very likely. In this case 
the object attributes using this subpool are limited by the list of the 
objects already generated and many possible objects which provide 
better solutions can be missing. The bang technique is proposed: when 
the changes in the upper-level pool stop for some time (the fitness and/
or penalty functions’ values don’t change for a period), the bang tech-
nique is applied to subpools – the attributes of all objects in subpools 
are mutated with specified probability and scope coefficient and the 
changes are committed even when the objects get worse fitness and 
penalty functions’ values. A new population with some features of the 
previous one is produced and after a number of iterations other possi-
ble unique objects can be generated.

Fig. 4. Two-level approach in COOMA

This version of COOMA is very difficult to use because there are a 
lot of settings that have to be adopted for different types of problems. 
And these settings may not work well during the whole optimization 
process. So there is a further two-level version of COOMA which re-
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quires minimal settings because it is self-adaptive. The basic idea of 
this approach is shown in Fig. 4.

All pools are divided into one aggregate pool cA and a number of 
segment pools Ac

S Bc ∈ . Segment pools are treated as the objects of the 
aggregate pool and at the same time act as the pools with their own ob-
jects – the solutions and their elements. The fitness function of segment 
pools is calculated after each Ac

N  iterations (by default 100N Ac
= ) via 

the formula: )c(F)c(F)c(F S
i

fS
i

pS
i += , , 

 , where  is the count of the accept-

ed penalty changes of the objects in the pool cS during Ac
N  iterations, 

|B| Sc
 is the total number of the objects in the segment pool cS,  is the 

total improvement of the best penalty function’s value in the segment 
pool cS during Ac

N  iterations,  is the count of the accepted fitness 
changes of the objects in the pool cS during Ac

N  iterations, ft
cSn  is the 

total improvement of the best fitness function’s value in the pool cS 
during Ac

N  iterations. If there are no infeasible objects in the segment 
pool, )c(F S

i
p  is set to 1.

Initially all segment pools have the equal number of objects. After 
each Ac

N  iterations the objects are redistributed among segment pools 
proportionally the values of their fitness functions, but the number of 
objects in the segment pool cS can’t be less than its minimal quota Sc

q  
(by default 1q Sc

= ).
The parameters of segment pools (such as mov

cp , rep
cK , )dup(rep

cp , )F(rep
cp

+

, 
)F(rep

cp
−

, )P(rep
cp

+

, )P(rep
cp

−

, etc.) become attributes which are modified each 
Ac

N  iterations after redistributing of objects among segment pools. 
The first segment pool is called etalon pool and its attributes are not 
changed (it allows to preserve initial parameters).
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As the optimization process may pass through a number of stages 
which require different settings, the predefined strategies technique 
can be realized. There are three basic predefined strategies (the num-
ber can be increased): a) standard search, b) local search and c) global 
search. The default strategy is standard search. It has homogenized 
parameter configuration applicable for different problems. After a 
number of iterations since the best fitness and penalty functions’ val-
ues of the objects in all segment pools stopped to change the random 
strategy is selected. Local search strategy helps in situations when 
COOMA is close to optimal solution and more accurate search in the 
possible optimum area is required (it has more precise replication and 
mutation scope coefficients). Global search strategy is successful 
when the local optimum is already reached and we need to explore 
full search space to find better solutions (it has higher replication and 
mutation scope coefficients). The new selected strategy is assigned to 
etalon pool.

Results
To demonstrate the operation of COOMA, two multi-level prob-

lems were optimized using two-level version of algorithm with four 
segment pools.

First is one-dimensional wood board cutting problem. Suppose we 
have three types of wood boards with lengths 200, 300 and 600 cm 
costing each $1, $1.25 and $1.75 respectively. The boards are to be 
cut into small board parts: 36 parts with length 120 cm, 25 parts – 300 
cm and 14 parts – 500 cm. The total cost of materials should be min-
imized.

In the terms of COOMA there are three subpools with cutting 
methods 3,2,1i,ci =  (for each possible length of boards) and one 
main pool with solutions c4. Objects representing cutting methods 

 have three attributes-variables k,b j,i
x  encoding 

a number of parts of type k cut from one board of type i and two attri-
butes-parameters ib LL

j,i
=  and ib PP

j,i
=  – length and cost of the board 

of type i. The solutions  have three object at-
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tributes-variables  containing from 0 to 40 objects from 
subpools of each type. So solution shows how many boards of each 
type should be cut using different methods. 

The fitness function of the objects representing cutting methods is 
, the single constraint is1 

 (when the constraint is not satisfied, 
the penalty function’s value equals the difference between the left and 
the right part of the expression, otherwise the penalty function’s value 
is zero).

The fitness function of the solutions is  and 

constraints are ,  and , where 

.
The minimal fitness function’s value is $59.5, the optimal solution 

is shown in Table 1. The minimal fitness function value is achieved 
when 34 boards with length 600 cm are cut using the combination of 
4 cutting methods.

Table 1.
The optimal solution of the wood board cutting problem (one of)

Board 
type

Cost  
per board, $ Cuts Part 1,  

120 cm
Part 2,  
300 cm

Part 3,  
500 cm

Cost per cutting 
method, $

Board 1,
200 cm 1 – – – – –

Board 2,  
300 cm 1.25 – – – – –

Board 3,  
600 cm 1.75

6 5 – – 10.5
3 2 1 – 5.25
11 – 2 – 19.25
14 – – 1 24.5

Total – 34 36 25 14 59.5

The average optimization statistics of 1000 runs of COOMA for 
wood board cutting problem is given in Table 2. Bang technique prac-
tically shows no effect in this case.
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Table 2.
COOMA statistics for wood board cutting problem

Test 
number

Stop when 
no change, 

steps

Bang 
technique 
applied

Average 
fitness

Average  
step num-

ber

Solution 
not found, 

runs
1 1000 – 60.2 1 867.7 4
2 1000 + 60.14 1 863.6 4
3 2000 – 59.9 3 293.9 6
4 2000 + 59.75 3 321.4 7
5 3000 – 59.72 4 595.8 1
6 3000 + 59.63 4 607.5 6
7 5000 – 59.65 7 034.9 5
8 5000 + 59.54 6 831.9 6

Second test problem is an abstract engineering prob-
lem  – the machine containing components is designed. The 
solutions in the main pool c1 (pool of the machines) have one 
object attribute  which contains 3 ob-
jects from the subpool c2 (components’ pool). The objects in 
the subpool  have three attributes-vari-
ables  and are optimized via formula 

. The solutions in the main pool 

are optimized using formula .
It is clear that the minimal value of the fitness function is 0 when 

all three selected components have all variables with zero values. The 
average optimization statistics of 1000 runs of COOMA for machine 
design problem is given in Table 3. The capacity of the subpool (20) 
is less than the possible number of optimal components (125 com-
ponents with F(bj) = 0). So the bang technique helps to find optimal 
solutions. Without it the average fitness function’s value doesn’t go 
lower 2.618 even after 5800 iterations.

Though COOMA is not mainly intended to work with classical 
mathematical functions and its major mission is to optimize multi-lev-
el object structures, to demonstrate the operation of COOMA several 



40 International Journal of Advanced Studies, Vol. 7, No 2, 2017

well-known test functions were optimized: 8 functions without con-
straints and 11 functions with constraints.

Table 3.
COOMA statistics for machine design problem

Test 
num-
ber

Stop when 
no change, 

steps

Bang tech-
nique applied

Average 
fitness

Average  
step number

Solution not 
found, runs

1 1000 – 2.905 1 380.7 –
2 1000 + 0.066 1 896.0 –
3 2000 – 2.927 2 531.4 –
4 2000 + 0.002 3 131.2 –
5 3000 – 2.923 3 667.8 –
6 3000 + 0.0 4 229.4 –
7 5000 – 2.618 5 800.0 –
8 5000 + 0.0 6 229.0 –

Table 4.
COOMA results for test functions without constraints

Test 
function

Number  
of vari-
ables

Average  
step num-

ber

Average operations’ usage, % 
(movement : replication : mu-

tation)

Solution 
not found, 

runs
De Jong 1 50 6 830.6 1.91 : 12.62 : 85.47 –
Rosen-
brock’s 
saddle

50 1 009 831.9 11.18 : 1.29 : 87.53 –

De Jong 3 50 11 868.8 0.63 : 14.76 : 84.61 –
Rastrigin 50 30 002.3 9.58 : 4.7 : 85.72 –
Schwefel 50 77 805.1 21.93 : 1.53 : 76.55 –
Griewank 50 13 451.1 7.72 : 6.92 : 85.36 1
Ackley 50 17 055.3 7.65 : 7.56 : 84.79 –
Schaffer 
N. 4 2 190.6 11.53 : 7.56 : 80.91 –

The average optimization statistics of 100 runs of COOMA for test 
functions without constraints is given in Table 4. The parameters of 
optimization: 12 solutions in the main pool divided into 4 segment 
pools, fitness function’s precision ±0.001, apply new strategy after 
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100n steps during which fitness function doesn’t change (where n is 
the number of variables), stop when exact or better value of fitness 
function is achieved (the search also stops and reports “Solution not 
found” if after 50 changes of strategy, fitness function’s value is still 
not found).

All functions were successfully optimized. The worst results (max-
imal average step number 1 009 831.9) were shown for Rosenbrock’s 
saddle test.

The functions with constraints marked G1-G11 were taken from 
[8, Appendix]. The average optimization statistics of 100 runs of 
COOMA for test functions with constraints is given in Table 5. The 
parameters of optimization: 12 solutions in the main pool divided 
into 4 segment pools, fitness and penalty functions’ precision ±0.001 
(±0.002 for G7), equalities’ precision ±0.0001, apply new strategy af-
ter 100n steps during which fitness function doesn’t change (where n 
is the number of variables), stop when exact or better value of fitness 
function is achieved (the search also stops and reports “Solution not 
found” if after 1000 changes of strategy, fitness function’s value is still 
not found).

Table 5.
COOMA results for test functions with constraints

Test 
function

Number  
of vari-
ables

Average  
step num-

ber

Average operations’ usage, % 
(movement : replication : mu-

tation)

Solution 
not found, 

runs
G1 13 10 615.1 20.81 : 2.53 : 76.66 –
G2 20 1 250 319.8 20.29 : 2.58 : 77.14 6
G3 20 16 785.2 18.85 : 0.93 : 80.22 3
G4 5 24 748.6 27.4 : 1.25 : 71.35 –
G5 4 2 263.5 29.6 : 0.67 : 69.73 1
G6 2 8 021.6 28.6 : 0.77 : 70.62 –
G7 10 1 216 486.5 18.88 : 9.33 : 71.79 9
G8 2 83.0 27.85 : 0.77 : 71.37 –
G9 7 866 667.7 20.82 : 5.0 : 74.18 54
G10 8 618 702.6 28.06 : 0.44 : 71.49 72
G11 2 1 298.19 22.72 : 1.11 : 76.17 –
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The problems occurred with G7 function. COOMA was able to 
find optimal solution only with fitness and penalty functions’ preci-
sion ±0.002 and still the average step number (1 216 486.5) is one of 
the biggest. And the maximal average step number (1 250 319.8) was 
shown for G2 function.

G10 and G9 functions lead in “Solution not found” situation (72 
and 54 failures respectively).

The fitness function’s value received for G5 function (average 
4605.68, minimal 4220.53, maximal 5120.36) is better than reported 
in [8, Appendix] (5126.4981).

To demonstrate the ability of COOMA to solve multimodal func-
tions, test function  was opti-

mized. Function’s minimal value is 0 and the number of optimums is 
5n, where n is the number of variables.

The average optimization statistics of 100 runs of COOMA for 
multimodal test function with different number of variables is given 
in Table 6. The parameters of optimization: main pool divided into 4 
segment pools, unique objects’ requirement of the main pool is set, 
fitness function’s precision ±0.001, stop after 2000n steps.

Table 6.
COOMA results for multimodal test function

Number  
of vari-
ables

Step 
count

Total number 
of solutions  
in main pool

Average 
found 

optimums 
count

Total 
number 
of opti-
mums

Average opera-
tions’ usage, % 

(movement : repli-
cation : mutation)

1 2 000 12 4.8 5 22.27 : 1.36 : 76.37
2 4 000 32 18.1 25 20.7 : 1.53 : 77.77
3 6 000 160 88.6 125 21.94 : 1.21 : 76.86
4 8 000 200 169.1 625 19.77:1.68:78.55
5 10 000 200 187.9 3 125 16.12 : 1.85 : 82.03
10 20 000 200 192.4 9 765 625 14.11 : 2.21 : 83.68

Statistics shows that the maximal number of optimums from known 
number is found for test cases with smaller dimensions (4.8 from 5 



43Международный журнал перспективных исследований, Т. 7, №2, 2017

for one variable’s case and 18.1 from 25 for two variables’ case). In 
other cases the average number of found optimums is much more less 
than known total number because (possible reasons) a) the number of 
known optimums grows faster than the number of steps, b) the ability 
to find solutions is limited by the total capacity of the main pool (for 
tests with 4 variables and more).

Discussion
As an efficient optimization algorithm COOMA should deal with 

several factors that complicate the application of stochastic search 
methods in practice (the list is not complete). 

The first one is the multimodality of the objective function. Classi-
cal stochastic search algorithms are likely to find one best solution and 
that’s a problem because a) the “best” solution is usually only a local 
optimum and the global optimum may be not found; b) in some cases 
we need to find out all the solutions to satisfy the requirements first 
and then select the best one among them manually according to other 
criterions [4]. The problem can be partially solved with special set-
tings of the classical algorithms (such as increased level of mutations 
and cross-breeding in GA) and using the new approaches [5, 9, 10].

COOMA works with multimodal objective functions realizing 
mechanism which limits the area of replication and mutation opera-
tions. The replication and mutation scopes are regulated on several 
levels – by replication and mutation scope coefficients of the pools, 
objects and attributes. These coefficients depend on the fitness and 
penalty functions’ values of the object, on the strategy (standard, local 
or global search) implemented by the pool and on the initial settings 
of the algorithm.

The second difficulty is constraint optimization. The goal of con-
straint optimization is to optimize the fitness function while satisfying 
a group of constraints. There are different modifications of optimiza-
tion algorithms [2, 11, 13] that can deal with constraint optimization. 
The basic approaches of handling constraints (on the example of ge-
netic algorithms) are described in [8].
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In COOMA for each object in pool the new fitness and penalty 
functions’ values are calculated and the changes are accepted when a) 
current penalty function’s value is positive (the object is infeasible) 
and the new penalty function’s value is less than its current value or b) 
the object is feasible and the new fitness function’s value is better than 
its current value. Realizing this model COOMA at first finds the fea-
sible area and then searches for the optimal solutions within this area.

The next factor is that there is no optimal parameter configuration of 
the certain algorithm for all types of problems. The situation is described 
by so called “No free lunch” theorem [17]. There are three basic ap-
proaches: a) to use some homogenized parameter configuration (which 
will work with some average performance for different problems); b) to 
change parameter configuration manually before solving each problem; 
c) to adopt parameters of the algorithm automatically before or while 
solving the problem (the idea which seems to be more perspective). The 
realization of the last approach is described in [7], [15, Section 10].

COOMA implements a self-adaptive two-level approach when 
each pool is divided into one aggregate pool and a number of segment 
pools which are treated as the objects of the aggregate pool. This ap-
proach helps to adopt parameters of the algorithm automatically while 
solving the problem.

And the last but not the least difficulty is a number of variables and 
their behavior in real-world problems. When the number of variables 
increases and their behavior becomes rather complex, even the very 
best algorithms are not able to find the optimal solution in a reason-
able time because the searching space is too large. One of the possible 
ways is to separate a single big problem into several smaller ones ac-
cording to the problem’s structure, and realize a multi-level hierarchi-
cal algorithm. This approach is realized e. g. in [14].

COOMA realizes an Object-Relational Mapping (ORM) model 
supporting practically any types of parameters, variables, and associ-
ations between objects. The objects of different classes are organized 
in pools and pools form the hierarchical structure according to the 
associations between classes.
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Conclusion
The main advantage of the proposed algorithm (COOMA) is that 

it can find optimal solutions of the problems described in the terms of 
object-oriented models with practically any types of parameters, vari-
ables, and associations between objects. It can easily be implemented 
in a form of computer program in which problem models can be built 
using visual interface or exported from existing database and ORM 
structures.

As the optimization algorithm COOMA is able to solve problems 
with multimodal fitness functions and a system of constraints and has 
a built-in self-adaptive settings’ mechanism. 

COOMA source code on Java is available on request.
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